Для решения этой задачи воспользуемся формулой для КПД тепловой машины по циклу Карно:
η = 1 - Tc/Th,
где η - КПД машины, Tc - температура холодильника, Th - температура нагревателя.
Из условия задачи КПД идеальной тепловой машины по циклу Карно равен 25%, то есть 0.25.
После повышения температуры нагревателя на ΔT и увеличения КПД в 2 раза, новый КПД будет равен 0.5.
Предположим, что исходно температура нагревателя была Th1, а после увеличения - Th2.
Уравнения для двух случаев будут следующими:
0.25 = 1 - Tc/Th1,
0.5 = 1 - Tc/Th2.
Решив эту систему уравнений, найдем Tc/Th1 и Tc/Th2.
Tc/Th1 = 0.75,
0.5 = 1 - Tc/Th2,
Tc/Th2 = 0.5.
Далее, найдем отношение Th2 к Th1:
Tc/Th1 / Tc/Th2 = 0.75 / 0.5 = 3/2.
Таким образом, температуру нагревателя нужно повысить на 50% (на 1/2 начального значения), чтобы увеличить КПД в 2 раза.
Для решения этой задачи воспользуемся формулой для КПД тепловой машины по циклу Карно:
η = 1 - Tc/Th,
где η - КПД машины, Tc - температура холодильника, Th - температура нагревателя.
Из условия задачи КПД идеальной тепловой машины по циклу Карно равен 25%, то есть 0.25.
После повышения температуры нагревателя на ΔT и увеличения КПД в 2 раза, новый КПД будет равен 0.5.
Предположим, что исходно температура нагревателя была Th1, а после увеличения - Th2.
Уравнения для двух случаев будут следующими:
0.25 = 1 - Tc/Th1,
0.5 = 1 - Tc/Th2.
Решив эту систему уравнений, найдем Tc/Th1 и Tc/Th2.
0.25 = 1 - Tc/Th1,
Tc/Th1 = 0.75,
0.5 = 1 - Tc/Th2,
Tc/Th2 = 0.5.
Далее, найдем отношение Th2 к Th1:
Tc/Th1 / Tc/Th2 = 0.75 / 0.5 = 3/2.
Таким образом, температуру нагревателя нужно повысить на 50% (на 1/2 начального значения), чтобы увеличить КПД в 2 раза.