В треугольнике ABC AC=BC=38, угол C равен 30. Найдите высоту AH.

29 Авг 2019 в 18:41
172 +1
0
Ответы
1

Для начала найдем сторону AB с помощью теоремы косинусов:

AB^2 = AC^2 + BC^2 - 2ACBCcosC
AB^2 = 38^2 + 38^2 - 23838cos30
AB = sqrt(38^2 + 38^2 - 23838*cos30)
AB = sqrt(2884)
AB = 53.6

Теперь найдем площадь треугольника ABC:

S = 0.5 AB AH

S = 0.5 53.6 AH
AH = 2S / AB
AH = 2 (0.5 38 38 sin30) / 53.6
AH = (38 38 0.5 * 0.5) / 53.6
AH = 361 / 53.6
AH ≈ 6.73

Итак, высота треугольника AH равна примерно 6.73.

20 Апр 2024 в 12:46
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир