Прямая AB касается окружности с центром в точке O радиуса r в точке B . Найдите AB (в см), если известно, что AO = 10,2 см, ∠OAB = 60 0

27 Окт 2019 в 17:42
166 +1
1
Ответы
1

Поскольку прямая AB касается окружности в точке B, то угол между радиусом и касательной равен 90 градусов. Таким образом, треугольник OAB является прямоугольным.

Мы знаем, что AO = 10,2 см и ∠OAB = 60 градусов. Тогда в прямоугольном треугольнике OAB мы можем найти сторону AB с помощью тригонометрических функций.

tan(60) = AB / AO
тангенс 60 градусов равен √3

√3 = AB / 10,2

AB = 10,2 * √3 ≈ 17,66 см

Итак, длина отрезка AB составляет около 17,66 см.

19 Апр 2024 в 04:09
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир