В прямоугольном треугольнике АВС угол А равен 90 градусов, АВ = 6см, АС = 10 см. Определите расстояния от точки В до прямой АС

21 Янв 2020 в 19:46
186 +1
0
Ответы
1

Для начала найдем высоту треугольника из вершины А на гипотенузу:

h = √(AB AC) = √(6 10) = √60 = 2√15 см

Теперь рассмотрим треугольник ВМС, где M - проециция точки В на сторону АС. Треугольники ВМС и ВАВ' (где А' - проециция точки А на сторону ВС) подобны, так как у них углы при вершине В равны. Поэтому:

BM/BA = MS/AC

BM/6 = MS/10

MS = 10 BM / 6 = 5/3 BM

Также из подобия треугольников мы знаем, что BM + MS = h

Заменяем MS на 5/3 * BM:

BM + 5/3 * BM = 2√15

8/3 * BM = 2√15

BM = 3/4 * √15

Таким образом, расстояние от точки В до прямой АС равно BM = 3/4 * √15 см.

18 Апр 2024 в 19:23
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир