First, we will expand the terms in the expression:
(a+1)^2 = a^2 + 2a + 1
2(a+1) = 2a + 2
-3(a-1)(a+1) = -3(a^2 - a + a - 1) = -3(a^2 - 1)
Now, we can substitute those expanded terms back into the original expression:
(a^2 + 2a + 1) + (2a + 2) - (-3(a^2 - 1))
Simplify by combining like terms:
a^2 + 2a + 1 + 2a + 2 + 3a^2 + 3
Now, combine like terms:
a^2 + 3a^2 + 2a + 2a + 1 + 2 + 3
Finally, combine all the terms together:
4a^2 + 4a + 6
So, the simplified form of the expression (a+1)^2 + 2(a+1) - 3(a-1)(a+1) is 4a^2 + 4a + 6.
First, we will expand the terms in the expression:
(a+1)^2 = a^2 + 2a + 1
2(a+1) = 2a + 2
-3(a-1)(a+1) = -3(a^2 - a + a - 1) = -3(a^2 - 1)
Now, we can substitute those expanded terms back into the original expression:
(a^2 + 2a + 1) + (2a + 2) - (-3(a^2 - 1))
Simplify by combining like terms:
a^2 + 2a + 1 + 2a + 2 + 3a^2 + 3
Now, combine like terms:
a^2 + 3a^2 + 2a + 2a + 1 + 2 + 3
Finally, combine all the terms together:
4a^2 + 4a + 6
So, the simplified form of the expression (a+1)^2 + 2(a+1) - 3(a-1)(a+1) is 4a^2 + 4a + 6.