В футбольном турнире 14 команд сыграли между собой 6 туров.- каждая команда сыграла с шестью разными командами. Обязательно ли найдутся три команды , не сыгравшие между собой ни одного матча?

16 Авг 2021 в 19:43
49 +1
0
Ответы
1

Для того чтобы определить, обязательно ли найдутся три команды, не сыгравшие между собой ни одного матча, можно воспользоваться принципом Дирихле.

У нас есть 14 команд и каждая сыграла с шестью разными командами, что дает нам общее количество матчей 14*6=84. Так как каждый матч играется двумя командами, то общее количество матчей равно 84/2=42.

Предположим, что все команды, сыгравшие между собой матчи, образуют полный граф, где каждая команда соединена с шестью другими. Таким образом, мы можем рассматривать это как граф с 14 вершинами и каждая вершина имеет степень 6.

Сумма степеней вершин графа равна удвоенному числу ребер. В данном случае сумма степеней вершин равна 2*84=168. Так как общее количество вершин в графе равно 14, это означает, что есть хотя бы три вершины, у которых сумма степеней больше или равна 36.

Если мы предположим, что три команды не сыграли между собой ни одного матча, то сумма степеней соответствующих вершин будет 0+0+0=0, что меньше 36. Значит, обязательно найдутся три команды, не сыгравшие между собой ни одного матча.

17 Апр 2024 в 13:21
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир