Для начала преобразуем уравнения системы:
1) 3(x+2y)-y=27раскроем скобки:3x + 6y - y = 273x + 5y = 27
2) 4(x+y)-3x=23раскроем скобки:4x + 4y - 3x = 23x + 4y = 23
Теперь полученную систему уравнений можно решить методом подстановки или методом сложения/вычитания.
Допустим, мы решаем методом вычитания:
1) 3x + 5y = 272) x + 4y = 23
Умножим второе уравнение на 3 для получения одинакового коэффициента при x:3(x + 4y) = 3(23)3x + 12y = 69
Теперь вычтем первое уравнение из полученного уравнения:(3x + 12y) - (3x + 5y) = 69 - 277y = 42y = 6
Подставим значение y обратно в любое из уравнений для определения x:x + 4(6) = 23x + 24 = 23x = -1
Итак, решение системы уравнений: x = -1, y = 6.
Для начала преобразуем уравнения системы:
1) 3(x+2y)-y=27
раскроем скобки:
3x + 6y - y = 27
3x + 5y = 27
2) 4(x+y)-3x=23
раскроем скобки:
4x + 4y - 3x = 23
x + 4y = 23
Теперь полученную систему уравнений можно решить методом подстановки или методом сложения/вычитания.
Допустим, мы решаем методом вычитания:
1) 3x + 5y = 27
2) x + 4y = 23
Умножим второе уравнение на 3 для получения одинакового коэффициента при x:
3(x + 4y) = 3(23)
3x + 12y = 69
Теперь вычтем первое уравнение из полученного уравнения:
(3x + 12y) - (3x + 5y) = 69 - 27
7y = 42
y = 6
Подставим значение y обратно в любое из уравнений для определения x:
x + 4(6) = 23
x + 24 = 23
x = -1
Итак, решение системы уравнений: x = -1, y = 6.