11 Окт 2021 в 19:45
46 +1
0
Ответы
1

To solve this inequality, we need to first simplify both sides of the inequality:

lg(x^2 - 6) > lg(2x - 3)

Next, we can rewrite the logarithmic inequality in exponential form:

x^2 - 6 > 2x - 3

Now, let's solve for x:

x^2 - 2x + 3 > 0

(x - 3)(x - 1) > 0

The critical points are x = 1 and x = 3. We can now test the intervals created by these critical points:

When x < 1:
Both factors are negative, resulting in a positive product. This interval satisfies the inequality.

When 1 < x < 3:
One factor is positive and one factor is negative, resulting in a negative product. This interval does not satisfy the inequality.

When x > 3:
Both factors are positive, resulting in a positive product. This interval satisfies the inequality.

Therefore, the solution to the inequality lg(x^2-6) > lg(2x-3) is x < 1 or x > 3.

17 Апр 2024 в 10:06
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир