To simplify the expression \frac{4с^2 - 9x^2}{2c - 3x}, we can factor the numerator using the difference of squares:
4с^2 - 9x^2 = (2c + 3x)(2c - 3x)
Therefore, the expression simplifies to:
\frac{(2c + 3x)(2c - 3x)}{2c - 3x}
Now, we can cancel out the (2c - 3x) terms, leaving us with:
\boxed{2c + 3x}
To simplify the expression \frac{4с^2 - 9x^2}{2c - 3x}, we can factor the numerator using the difference of squares:
4с^2 - 9x^2 = (2c + 3x)(2c - 3x)
Therefore, the expression simplifies to:
\frac{(2c + 3x)(2c - 3x)}{2c - 3x}
Now, we can cancel out the (2c - 3x) terms, leaving us with:
\boxed{2c + 3x}