13 Дек 2019 в 19:41
135 +1
0
Ответы
1

To solve this equation, we can combine the logarithms on the left side of the equation using the properties of logarithms.

First, recall the following properties of logarithms:

log(a) - log(b) = log(a/b)log(a^n) = n*log(a)

Using these properties, we can rewrite the given equation as:

log5(x)^2 - log2(x) = log2(0.8)

Now, we can combine the logarithms on the left side using the first property:

log5(x)^2 / log2(x) = log2(0.8)

Next, we can rewrite log5(x)^2 and log2(x) in terms of a common base, say 10:

(log(x) / log(5))^2 - (log(x) / log(2)) = log2(0.8)

Now, we can simplify the equation further:

(log(x))^2 / (2*log(5)) - log(x) / log(2) = log2(0.8)

Now, we can substitute log2(0.8) = log(0.8) / log(2) = -0.3219 into the equation:

(log(x))^2 / (2*log(5)) - log(x) / log(2) = -0.3219

At this point, we can solve for x, either by substituting log5 and log2 with their respective values and solving numerically or by using a calculator to find the value of x.

18 Апр 2024 в 23:35
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир