Найдите вероятность появления ровно 3 орлов в серии бросаний симметричной монеты, если монету бросают 8 раз.

25 Дек 2019 в 19:40
214 +1
0
Ответы
1

Для решения этой задачи воспользуемся формулой Бернулли для вычисления вероятности биномиального распределения:

P(X=k) = C(n, k) p^k q^(n-k),

где P(X=k) - вероятность того, что событие произойдет k раз,
C(n, k) - число сочетаний из n по k,
p - вероятность наступления события в одном испытании,
q = 1 - p - вероятность не наступления события в одном испытании,
n - общее количество испытаний,
k - число раз, которое событие наступит.

В данном случае вероятность выпадения орла (или решки) в одном броске монеты равна 0.5, так как монета симметричная.

Таким образом, для нашей задачи:
p = 0.5,
q = 0.5,
n = 8,
k = 3.

Вычислим вероятность появления 3 орлов:

P(X=3) = C(8, 3) 0.5^3 0.5^(8-3) = 56 0.125 0.125 = 0.219.

Таким образом, вероятность появления ровно 3 орлов при 8 бросках монеты составляет 0.219 или 21.9%.

18 Апр 2024 в 23:04
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир