14 Окт 2020 в 19:43
238 +1
0
Ответы
1

To solve each inequality, we need to first isolate the quadratic term and then factor or expand to simplify before determining the solutions.

1) x^2 + 9 < 0
Since x^2 is always non-negative for real numbers, the inequality x^2 + 9 < 0 has no real solutions.

2) (x + 5)^2 + 3 < 0
Expanding (x + 5)^2 gives x^2 + 10x + 25, so the inequality becomes x^2 + 10x + 25 + 3 < 0. Simplifying further, we get x^2 + 10x + 28 < 0. This quadratic equation does not have real solutions since the parabola opens upwards.

3) -(x - 2)^2 - 4 > 0.66
Expanding -(x - 2)^2 gives -x^2 + 4x - 4, so the inequality becomes -x^2 + 4x - 4 - 0.66 > 0. Simplifying further, we get -x^2 + 4x - 4.66 > 0. In order to solve this, it would be best to set up a quadratic equation and determine the roots by factoring or using the quadratic formula.

It seems the last part of your question, ":25 > 2 ," doesn't have a clear relation to the provided inequalities. If you need further clarification or have another question, please feel free to ask!

17 Апр 2024 в 22:52
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир