Вычислить модуль индукции результирующего магнитного поля, созданного токами I1 и I2, текущими по прямому бесконечно длинному проводнику и круговому контуру радиуса R = 20см в точке O (см. рисунок). Круговой контур и точка O лежат в плоскости чертежа; направление токов указано на рисунке, причем I1= I2=10А.

9 Мар 2020 в 19:43
334 +1
0
Ответы
1

Для расчета модуля индукции результирующего магнитного поля сначала найдем индукцию магнитного поля, создаваемую каждым из токов.

Индукция магнитного поля от прямого бесконечно длинного проводника в точке O равна:

B1 = (μ₀ I1) / (2π r1)

где μ₀ - магнитная постоянная, I1 - сила тока в проводнике, r1 - расстояние от проводника до точки O.

Индукция магнитного поля от кругового контура в точке O равна:

B2 = (μ₀ I2 R^2) / (2 * (R^2 + r2^2)^(3/2))

где I2 - сила тока в контуре, R - радиус контура, r2 - расстояние от центра контура до точки O.

Теперь найдем суммарную индукцию магнитного поля в точке O как векторную сумму индукций от обоих источников:

B = B1 + B2

Модуль индукции результирующего магнитного поля в точке O:

|B| = sqrt(Bx^2 + By^2)

где Bx и By - компоненты вектора B по координатным осям.

Подставив данные в формулы, получим окончательный результат.

18 Апр 2024 в 16:21
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир