Найдите отношение площадей треугольников ABC,KMN,если АВ = 8см, ВС= 12см,АС= 16 см,КМ=10см,MN=15см,NK=20см

30 Янв 2020 в 19:45
131 +1
0
Ответы
1

Для начала посчитаем площадь треугольника ABC. Используем формулу Герона:

p = (AB + BC + AC) / 2 = (8 + 12 + 16) / 2 = 36 / 2 = 18

S_ABC = √(p(p - AB)(p - BC)(p - AC)) = √(18(18 - 8)(18 - 12)(18 - 16)) = √(18106*2) = √(2160) ≈ 46.45 см^2

Теперь посчитаем площадь треугольника KMN. Используем формулу Герона:

p = (KM + MN + NK) / 2 = (10 + 15 + 20) / 2 = 45 / 2 = 22.5

S_KMN = √(p(p - KM)(p - MN)(p - NK)) = √(22.5(22.5 - 10)(22.5 - 15)(22.5 - 20)) = √(22.512.57.5*2.5) = √(5263.28125) ≈ 72.54 см^2

Отношение площадей треугольников ABC и KMN равно:

S_ABC / S_KMN ≈ 46.45 / 72.54 ≈ 0.64

Ответ: Отношение площадей треугольников ABC и KMN составляет примерно 0.64.

18 Апр 2024 в 18:30
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир