Докажите, что сумма внешних углов треугольника ,взятых по одному при каждой вершине,равна 360 градусов

5 Мар 2020 в 12:12
422 +1
1
Ответы
1

Докажем данное утверждение.

Пусть у нас есть треугольник ABC. Обозначим внешние углы при вершине A как α, при вершине B как β и при вершине C как γ.

Так как угол внешний, он равен сумме соответствующего внутреннего угла и угла при другой вершине. Например, угол α равен углу BCA плюс угол B.

Таким образом, у нас есть следующие равенства:

α = BCA + B
β = CAB + C
γ = ABC + A

Сложим все углы:

α + β + γ = (BCA + B) + (CAB + C) + (ABC + A) = A + B + C + A + B + C = 2(A + B + C)

Но по свойству треугольника внутренние углы суммируются в 180 градусов, то есть A + B + C = 180.

Следовательно, α + β + γ = 2(A + B + C) = 2 * 180 = 360

Таким образом, сумма внешних углов треугольника равна 360 градусов.

18 Сен 2024 в 10:47
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир