Всош по математике Пятиугольник ABCDE вписан в окружность, причем АВ = ВС. Отрезки BD и СЕ пересекаются в точке G, лучи DB и ЕА пересекаются в точке F. Известно, что CG = 1, DG: GB: BF = 5:2:3 Найдите длину отрезка F A
We also need to find the length of other segments. Let's find angle AJH by finding the angle BHJ first. Since AB = BC, ∠AHB = ∠BJD = 180 - ∠ABC. Hence, ∠FBJ = ∠BJD - ∠FBD = 180 - ∠ABC - ∠FBD.
Also, since AE is a tangent to the circumcircle of pentagon ABCDE at A, ∠FAB = ∠ABC by the tangent-secant theorem. Thus, ∠FBD = 180 - ∠ABC.
Then, DG:GB:BF = 5:2:3, using these ratios and the length of CG = 1, we can express lengths JF = BF, JD = BD, and JH = BH as follows. CG:GB = 1:2. Since GD:GB = 5:2, JD = 5/25/25/2 * GB = 5, DG = 5 - 1 = 4; BC = AB, FC = BF. Use the Law of Sines to find AF. As we found the measures of sinα+βα+βα+β and cosα+βα+βα+β as well from the above calculations. The length of segment AF: AF = FC / sin∠CFA∠CFA∠CFA = 20/3.
Поскольку АВ=ВС, то угол ABC равен углу ACB, так что произведем замену углов:
АВС=2α, ВСА=2β. Тогда ВCD=5α, СDE=5β.
Возьмём AC=2R. Тогда BC=2Rsinα, AD=2Rsinβ, BD=2Rsinα+βα+βα+β.
Воспользуемся теоремой синусов для треугольника BCD:
R/sin5α5α5α=2Rsinα+βα+βα+β/sin5α5α5α.
Упростим:
1/sin5α5α5α=2sinα+βα+βα+β
1/sin5α5α5α=2sinαcosβ+2cosαsinβ
sinαcosβ+cosαsinβsinαcosβ+cosαsinβsinαcosβ+cosαsinβ^2=1/41−cos2(5α)1-cos^2(5α)1−cos2(5α)
sin^2α+βα+βα+β=1/41−sin2(5α)1-sin^2(5α)1−sin2(5α)
sin^2α+βα+βα+β=1-cos^25α5α5α
cos^2α+βα+βα+β+sin^2α+βα+βα+β=1-cos^25α5α5α
Так как BD и CE делятся пополам:
sinα+βα+βα+β/sin5β=3/2sin5α
sinα+βα+βα+β=3/2cosβ
Тогда sinβ/sinα+βα+βα+β=5/3
cosβ=5sinα+βα+βα+β/3
1−cos2(α+β)1-cos^2(α+β)1−cos2(α+β)1−sin2(5α)1-sin^2(5α)1−sin2(5α)=5^2/3^2
cos^2α+βα+βα+β+cos^25α5α5α=1-25/9
5cos^25α5α5α=4
R=2/5sin5α5α5α
Подставим это в AC=2R:
AC=4sin5α5α5α/5
СА⋅СBСА·СBСА⋅СBСD⋅DEСD·DEСD⋅DE=1
4sin5α5α5α/5·2R·2Rsinα+βα+βα+β2R⋅2Rsin(5α)2R·2Rsin(5α)2R⋅2Rsin(5α)=1
4sin5α5α5α/5·2/5sin5α5α5α·2/5sin5α4/5sin2α4/5sin2α4/5sin2α
sinα\sinβ=1/5
sinα=sqrt555/5
sinβ=sqrt555/5
sinα+βα+βα+β=3sqrt222/10
cosα+βα+βα+β=4/5
cosβ=5sqrt222/6
AD=2Rsinβ=4sqrt555/3
CD=2Rsin5β=2√5
We also need to find the length of other segments. Let's find angle AJH by finding the angle BHJ first. Since AB = BC, ∠AHB = ∠BJD = 180 - ∠ABC. Hence, ∠FBJ = ∠BJD - ∠FBD = 180 - ∠ABC - ∠FBD.
Also, since AE is a tangent to the circumcircle of pentagon ABCDE at A, ∠FAB = ∠ABC by the tangent-secant theorem. Thus, ∠FBD = 180 - ∠ABC.
Then, DG:GB:BF = 5:2:3, using these ratios and the length of CG = 1, we can express lengths JF = BF, JD = BD, and JH = BH as follows.
CG:GB = 1:2. Since GD:GB = 5:2, JD = 5/25/25/2 * GB = 5, DG = 5 - 1 = 4; BC = AB, FC = BF.
Use the Law of Sines to find AF. As we found the measures of sinα+βα+βα+β and cosα+βα+βα+β as well from the above calculations.
The length of segment AF:
AF = FC / sin∠CFA∠CFA∠CFA = 20/3.