26 Мар 2020 в 19:40
168 +1
0
Ответы
1

To solve this equation, we need to find the value of x when the tangent of x*pi/4 is equal to 3.

The tangent function is defined as opposite/adjacent in a right triangle. Therefore, we can create a right triangle with an angle x*pi/4 and calculate the tangent of that angle to be equal to 3.

Let's set up the equation:

tan(x*pi/4) = 3

Now, we need to find the value of x that satisfies this equation. One way to do this is to use the inverse tangent function to find the angle whose tangent is 3:

x*pi/4 = arctan(3)

Now, we can solve for x:

x = 4*arctan(3)/pi

Using a calculator, we find that:

x ≈ 3.2957

Therefore, the value of x when tan(x*pi/4) = 3 is approximately 3.2957.

18 Апр 2024 в 15:30
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир