8 Апр 2021 в 19:49
99 +1
0
Ответы
1

1) When solving for |x| in the equation 3|x| - 2 = 2|x| + 3, we can simplify by isolating the absolute value term:

3|x| - 2 = 2|x| + 3
|3x| - 2 = |2x| + 3

Since we have two absolute value terms being subtracted, we can rewrite the equation as:

|3x| - |2x| = 3 + 2

This simplifies to:
|x| = 5

Therefore, the solution for |x| is x = 5 or x = -5.

2) Similarly, we can solve for |x| in the equation 4|x| - 7 = -2|x| + 5:

4|x| - 7 = -2|x| + 5
|4x| - 7 = |-2x| + 5

Similar to the first equation, we have two absolute value terms, and we can rewrite the equation as:

|4x| + 2x = 7 + 5

This simplifies to:
|x| = 6

Therefore, the solution for |x| is x = 6 or x = -6.

17 Апр 2024 в 19:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир