15 Апр 2021 в 19:44
119 +1
0
Ответы
1

Для нахождения скорости v(t) и ускорения a(t) функции X(t)=t^3+1 необходимо продифференцировать данную функцию.

X(t)=t^3+1

v(t) = dX(t)/dt = d/dt (t^3+1) = 3t^2

a(t) = dv(t)/dt = d/dt (3t^2) = 6t

Теперь найдем значения скорости и ускорения в момент времени t=9.

v(9) = 3(9)^2 = 381 = 243

a(9) = 6*9 = 54

Итак, v(9) = 243 и a(9) = 54.

17 Апр 2024 в 19:05
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир