Let's first simplify the equation by multiplying both sides by y−1y-1y−1:
Y990990990 - Y999y−1y-1y−1 = 990*y−1y-1y−1
990Y - 9Yyyy + 9Y = 990y - 990
Distribute the Y on the left side:
990Y - 9Y^2 + 9Y = 990y - 990
Rearrange the terms:
9Y^2 - 990Y + 9Y - 990 = 0
Combine like terms:
9Y^2 - 981Y - 990 = 0
Now, this is a quadratic equation. To solve for Y, we can use the quadratic formula:
Y = −(−981)±sqrt((−981)2−4<em>9</em>(−990)) -(-981) ± sqrt((-981)^2 - 4<em>9</em>(-990)) −(−981)±sqrt((−981)2−4<em>9</em>(−990)) / 18
Y = 981±sqrt(961809+35640) 981 ± sqrt(961809 + 35640) 981±sqrt(961809+35640) / 18
Y = 981±sqrt(997449) 981 ± sqrt(997449) 981±sqrt(997449) / 18
Y = 981±999.22 981 ± 999.22 981±999.22 / 18
Y = 1980.22or−18.221980.22 or -18.22 1980.22or−18.22 / 18
Therefore, the solutions for Y are approximately Y = 110.01 or Y ≈ -1.01.
Let's first simplify the equation by multiplying both sides by y−1y-1y−1:
Y990990990 - Y999y−1y-1y−1 = 990*y−1y-1y−1
990Y - 9Yyyy + 9Y = 990y - 990
Distribute the Y on the left side:
990Y - 9Y^2 + 9Y = 990y - 990
Rearrange the terms:
9Y^2 - 990Y + 9Y - 990 = 0
Combine like terms:
9Y^2 - 981Y - 990 = 0
Now, this is a quadratic equation. To solve for Y, we can use the quadratic formula:
Y = −(−981)±sqrt((−981)2−4<em>9</em>(−990)) -(-981) ± sqrt((-981)^2 - 4<em>9</em>(-990)) −(−981)±sqrt((−981)2−4<em>9</em>(−990)) / 18
Y = 981±sqrt(961809+35640) 981 ± sqrt(961809 + 35640) 981±sqrt(961809+35640) / 18
Y = 981±sqrt(997449) 981 ± sqrt(997449) 981±sqrt(997449) / 18
Y = 981±999.22 981 ± 999.22 981±999.22 / 18
Y = 1980.22or−18.221980.22 or -18.22 1980.22or−18.22 / 18
Therefore, the solutions for Y are approximately Y = 110.01 or Y ≈ -1.01.