To simplify the given expression, we need to combine like terms and find a common denominator:
Ax + by/a−ba-ba−bx+yx+yx+y - bx - ay/a+ba+ba+bx+yx+yx+y = Ax - bx + by/a−ba-ba−bx+yx+yx+y - ay/a+ba+ba+bx+yx+yx+y = A−bA - bA−bx + by/a−ba-ba−bx+yx+yx+y - ay/a+ba+ba+bx+yx+yx+y
Finding a common denominator for the fractions, we get:
= (A−b)(x)(a+b)+by(a+b)−ay(a−b)(A - b)(x)(a+b) + by(a+b) - ay(a-b)(A−b)(x)(a+b)+by(a+b)−ay(a−b) / (a−b)(a+b)(x+y)(a-b)(a+b)(x+y)(a−b)(a+b)(x+y) = (Aa−Ab+bya+byb−aay+aay)(Aa - Ab + bya + byb - aay + aay)(Aa−Ab+bya+byb−aay+aay) / (a−b)(a+b)(x+y)(a-b)(a+b)(x+y)(a−b)(a+b)(x+y) = Aa+byb−AbAa + byb - AbAa+byb−Ab / (a2−b2)(x+y)(a^2 - b^2)(x+y)(a2−b2)(x+y) = a2+b2a^2 + b^2a2+b2 / a2−b2a^2 - b^2a2−b2
Thus, the simplified expression is a2+b2a^2 + b^2a2+b2 / a2−b2a^2 - b^2a2−b2.
To simplify the given expression, we need to combine like terms and find a common denominator:
Ax + by/a−ba-ba−bx+yx+yx+y - bx - ay/a+ba+ba+bx+yx+yx+y = Ax - bx + by/a−ba-ba−bx+yx+yx+y - ay/a+ba+ba+bx+yx+yx+y = A−bA - bA−bx + by/a−ba-ba−bx+yx+yx+y - ay/a+ba+ba+bx+yx+yx+y
Finding a common denominator for the fractions, we get:
= (A−b)(x)(a+b)+by(a+b)−ay(a−b)(A - b)(x)(a+b) + by(a+b) - ay(a-b)(A−b)(x)(a+b)+by(a+b)−ay(a−b) / (a−b)(a+b)(x+y)(a-b)(a+b)(x+y)(a−b)(a+b)(x+y) = (Aa−Ab+bya+byb−aay+aay)(Aa - Ab + bya + byb - aay + aay)(Aa−Ab+bya+byb−aay+aay) / (a−b)(a+b)(x+y)(a-b)(a+b)(x+y)(a−b)(a+b)(x+y) = Aa+byb−AbAa + byb - AbAa+byb−Ab / (a2−b2)(x+y)(a^2 - b^2)(x+y)(a2−b2)(x+y) = a2+b2a^2 + b^2a2+b2 / a2−b2a^2 - b^2a2−b2
Thus, the simplified expression is a2+b2a^2 + b^2a2+b2 / a2−b2a^2 - b^2a2−b2.