28 Мая 2021 в 19:46
86 +1
0
Ответы
1

To solve these inequalities, we need to isolate the variable on one side of the inequality sign.

1) (5/6x - 1/4 > x + 0.75)

First, let's get rid of the fractions by multiplying all terms by the least common multiple of the denominators (12).

(12 \times (5/6x) - 12 \times (1/4) > 12 \times x + 12 \times 0.75)

(10x - 3 > 12x + 9)

Now, let's isolate the variable x by moving all the x terms to one side of the inequality sign.

(10x - 3 - 12x > 9)

(-2x - 3 > 9)

(-2x > 12)

Divide by -2 to solve for x.

(x < -6)

Therefore, the solution for the first inequality is (x < -6).

2) (2.5 + 3/8x > x)

Let's get rid of the fraction by multiplying all terms by the least common multiple of the denominators (8).

(8 \times (2.5) + 8 \times (3/8)x > 8 \times x)

(20 + 3x > 8x)

Now, let's isolate the variable x by moving all the x terms to one side of the inequality sign.

(20 > 8x - 3x)

(20 > 5x)

Divide by 5 to solve for x.

(x < 4)

Therefore, the solution for the second inequality is (x < 4)

17 Апр 2024 в 17:58
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир