18 Июн 2021 в 19:45
53 +1
0
Ответы
1

Для решения данной задачи нам нужно найти значения cos t, зная sin t = -0.1.

Используем формулу Пифагора: sin^2 t + cos^2 t = 1

Подставляем значение sin t = -0.1:

(-0.1)^2 + cos^2 t = 1

0.01 + cos^2 t = 1

cos^2 t = 1 - 0.01

cos^2 t = 0.99

cos t = ±√0.99 = ±0.994949

Теперь вычисляем 4cos^2 t - 6sin^2 t:

4cos^2 t - 6sin^2 t = 4(0.994949)^2 - 6(-0.1)^2

= 4(0.9899) - 6(0.01)

= 3.9596 - 0.06

= 3.8996

Итак, 4cos^2 t - 6sin^2 t = 3.8996.

17 Апр 2024 в 16:14
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир