Нужна ваша помощь в решении математики Найдите значения выражений. а) sin(π15)cos(4π15)+cos(π15)sin(4π15)sin(π15)cos(4π15)+cos(π15)sin(4π15). б) cos(123°)cos(78°)+sin(123°)sin(78°)cos(123°)cos(78°)+sin(123°)sin(78°). 2. Упростите выражения. а) −cos(α+β)−sin(β)sin(α)−cos(α+β)−sin(β)sin(α); б) cos(x−2π3)−√32sin(x)cos(x−2π3)−32sin(x).
а) Обратимся к формуле синуса суммы углов: sinα+βα+βα+β = sinαααcosβββ + cosαααsinβββ.
а) sinπ/15π/15π/15cos4π/154π/154π/15 + cosπ/15π/15π/15sin4π/154π/154π/15 = sinπ/15+4π/15π/15 + 4π/15π/15+4π/15 = sinπ/3π/3π/3 = √3/2.
б) cos123°123°123°cos78°78°78° + sin123°123°123°sin78°78°78° = cos123°−78°123° - 78°123°−78° = cos45°45°45° = 1/√2.
Упростим выражения:а) −cosα+βα+βα+β − sinβββsinααα = - cos(α)cos(β)−sin(α)sin(β)cos(α)cos(β) - sin(α)sin(β)cos(α)cos(β)−sin(α)sin(β) - sinβββsinααα = -cosαααcosβββ + sinαααsinβββ - sinβββsinααα = -cosαααcosβββ + sinβββsinααα - sinβββsinααα = -cosαααcosβββ - sinβββsinααα.
б) cosx−2π/3x - 2π/3x−2π/3 - √3/2 sinxxx = cosxxxcos2π/32π/32π/3 + sinxxxsin2π/32π/32π/3 - √3/2 sinxxx = cosxxx −1/2-1/2−1/2 + sinxxx √3/2 - √3/2 sinxxx = -1/2 cosxxx + √3/2 sinxxx - √3/2 sinxxx = -1/2 cosxxx.