4 Авг 2021 в 19:47
125 +1
0
Ответы
1

To solve this trigonometric equation, we can use the cosine addition and subtraction identities:

cosAAA - cosBBB = -2sin(A+B)/2(A + B)/2(A+B)/2sin(A−B)/2(A - B)/2(AB)/2 cosAAA + cosBBB = 2cos(A+B)/2(A + B)/2(A+B)/2cos(A−B)/2(A - B)/2(AB)/2

Given equation:
cos9x9x9x - cos7x7x7x + cos3x3x3x - cosxxx = 0

Apply the cosine subtraction identity to simplify the equation:
-2sin(9x+7x)/2(9x + 7x)/2(9x+7x)/2sin(9x−7x)/2(9x - 7x)/2(9x7x)/2 + 2sin(3x+x)/2(3x + x)/2(3x+x)/2sin(3x−x)/2(3x - x)/2(3xx)/2 = 0
-2sin8x8x8xsinxxx + 2sin2x2x2xsinxxx = 0

Factor out sinxxx:
-2sinxxxsin(8x)−sin(2x)sin(8x) - sin(2x)sin(8x)sin(2x) = 0

Set each factor equal to zero to find the solutions:
sinxxx = 0
This gives x = 0, π, 2π, ...

sin8x8x8x - sin2x2x2x = 0
sin8x8x8x = sin2x2x2x

Since sinAAA = sinBBB when A = nπ + −1-11^n*B nisanintegern is an integernisaninteger, we solve for x:
8x = 2x + n2π2π2π 6x = n2π2π2π x = nπ/3π/3π/3

Therefore, the solutions to the equation cos9x9x9x - cos7x7x7x + cos3x3x3x - cosxxx = 0 are:
x = 0, π, 2π, ..., nπ/3π/3π/3 where n is an integer.

17 Апр 2024 в 13:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир