15 Окт 2021 в 19:44
52 +1
1
Ответы
1

To solve the inequality, we need to find the critical points where the expression is equal to zero and where it is undefined.

The critical points are:
x = -5, -1, 3, -2, 3

Therefore, the intervals we need to test are (-∞,-5), (-5,-3), (-3,-2), (-2,-1), (-1,3), (3,∞).

We will test each interval by choosing a test point within each interval and plugging it into the expression to determine the sign of the expression in that interval.

For x = -6: (-5-6)^2(-6+5)(-6+1)^4/(-6^2-9)(-6+2) = (-1)^2(-1)(-5)^4/(36-9)(-4) = 100/1350 > 0
For x = -4: (-5-4)^2(-4+5)(-4+1)^4/(-4^2-9)(-4+2) = (-9)^2(1)(-3)^4/(16-9)(-2) = -4374 > 0
For x = - 2.5: (-5-2.5)^2(-2.5+5)(-2.5+1)^4/(-2.5^2-9)(-2.5+2) = (-7.5)^2(2.5)(-1.5)^4/(6.25-9)(-0.5) = 14.4 > 0
For x = -2: (-3)^2(-2+5)(-2+1)^4/(-2^2-9)(-2+2) = (3)^2(3)(-1)^4/(4-9)(0) = 0
For x = -1.5: (-3)^2(-1.5+5)(-1.5+1)^4/(-1.5^2-9)(-1.5+2) = (2.25)(3.5)(-0.5)^4/(2.25-9)(0.5) = 0
For x = 0: (-3)^2(0+5)(0+1)^4/(0^2-9)(0+2) = (3)^2(5)(1)^4/(-9)(2) = -5
For x = 2: (-3)^2(2+5)(2+1)^4/(2^2-9)(2+2) = (1)^2(7)(3)^4/(4-9)(4) = 63
For x = 4: (-3)^2(4+5)(4+1)^4/(4^2-9)(4+2) = (1)^2(9)(5)^4/7(6) = 1125/7 > 0
For x = 5: (-3)^2(5+5)(5+1)^4/(5^2-9)(5+2) = (2)^2(10)(6)^4/(25-9)(7) = 7200/224 > 0

Therefore, the solution to the inequality is x ∈ (-∞,-5) U (-1,3).

I hope this helps! Let me know if you have any questions.

17 Апр 2024 в 09:56
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир