Первым шагом можно выразить x из первого уравнения:
x = (2y - 1)/2
Затем подставить это значение во второе уравнение:
2((2y - 1)/2)^2 - y((2y - 1)/2) = 12
Упростим:
(2y - 1)^2 - y(2y - 1) = 12
Раскроем скобки и упростим:
4y^2 - 4y + 1 - 2y^2 + y = 12
2y^2 - 3y - 11 = 0
Теперь решим квадратное уравнение с помощью дискриминанта:
D = (-3)^2 - 42(-11) = 9 + 88 = 97
y1 = (3 + sqrt(97))/(22) ≈ 2.823y2 = (3 - sqrt(97))/(22) ≈ -1.573
Подставим значения y обратно в уравнение x=(2y-1)/2 и найдем x:
Для y1:
x = (2*2.823 - 1)/2 = 2.646
Для y2:
x = (2*(-1.573) - 1)/2 = -2.573
Итак, решение системы уравнений: x ≈ 2.646, y ≈ 2.823 либо x ≈ -2.573, y ≈ -1.573.
Первым шагом можно выразить x из первого уравнения:
x = (2y - 1)/2
Затем подставить это значение во второе уравнение:
2((2y - 1)/2)^2 - y((2y - 1)/2) = 12
Упростим:
(2y - 1)^2 - y(2y - 1) = 12
Раскроем скобки и упростим:
4y^2 - 4y + 1 - 2y^2 + y = 12
2y^2 - 3y - 11 = 0
Теперь решим квадратное уравнение с помощью дискриминанта:
D = (-3)^2 - 42(-11) = 9 + 88 = 97
y1 = (3 + sqrt(97))/(22) ≈ 2.823
y2 = (3 - sqrt(97))/(22) ≈ -1.573
Подставим значения y обратно в уравнение x=(2y-1)/2 и найдем x:
Для y1:
x = (2*2.823 - 1)/2 = 2.646
Для y2:
x = (2*(-1.573) - 1)/2 = -2.573
Итак, решение системы уравнений: x ≈ 2.646, y ≈ 2.823 либо x ≈ -2.573, y ≈ -1.573.