2 Дек 2021 в 19:40
65 +1
1
Ответы
1

1) log9x + 2log3x = 5

Rewrite the logarithms using the power rule:

log9x9x9x + log3x3x3x^2 = 5

Combine the logarithms using the product and power rules:

log9x9x9x + log9x9x9x^2 = 5

Simplify the expression:

log9x9x9x + log81x281x^281x2 = 5

Combine the logarithms using the product rule:

log9x∗81x29x * 81x^29x81x2 = 5

Simplify the expression:

log729x3729x^3729x3 = 5

Convert to exponential form:

729x^3 = 10^5

729x^3 = 100000

x^3 = 100000 / 729

x^3 = 137.174

x = ∛137.174

x = 5.600

2) log2x2−3x^2 - 3x23 + 1 = log26x−106x - 106x10

Subtract 1 from both sides:

log2x2−3x^2 - 3x23 = log26x−106x - 106x10 - 1

Use the properties of logarithms to combine the logarithms on the right side:

log2x2−3x^2 - 3x23 = log2(6x−10)/2(6x - 10) / 2(6x10)/2

Since the bases are the same, the arguments must be equal:

x^2 - 3 = 6x−106x - 106x10 / 2

Simplify the equation:

2x^2 - 6 = 6x - 10

Rearrange the equation to set it equal to zero:

2x^2 - 6x + 4 = 0

Solve the quadratic equation by factoring or using the quadratic formula:

x−2x - 2x22x−22x - 22x2 = 0

x = 2 or x = 1

Therefore, the solutions to the equation are x = 2 or x = 1.

17 Апр 2024 в 08:21
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир