1) log9x + 2log3x = 5
Rewrite the logarithms using the power rule:
log9x9x9x + log3x3x3x^2 = 5
Combine the logarithms using the product and power rules:
log9x9x9x + log9x9x9x^2 = 5
Simplify the expression:
log9x9x9x + log81x281x^281x2 = 5
Combine the logarithms using the product rule:
log9x∗81x29x * 81x^29x∗81x2 = 5
log729x3729x^3729x3 = 5
Convert to exponential form:
729x^3 = 10^5
729x^3 = 100000
x^3 = 100000 / 729
x^3 = 137.174
x = ∛137.174
x = 5.600
2) log2x2−3x^2 - 3x2−3 + 1 = log26x−106x - 106x−10
Subtract 1 from both sides:
log2x2−3x^2 - 3x2−3 = log26x−106x - 106x−10 - 1
Use the properties of logarithms to combine the logarithms on the right side:
log2x2−3x^2 - 3x2−3 = log2(6x−10)/2(6x - 10) / 2(6x−10)/2
Since the bases are the same, the arguments must be equal:
x^2 - 3 = 6x−106x - 106x−10 / 2
Simplify the equation:
2x^2 - 6 = 6x - 10
Rearrange the equation to set it equal to zero:
2x^2 - 6x + 4 = 0
Solve the quadratic equation by factoring or using the quadratic formula:
x−2x - 2x−22x−22x - 22x−2 = 0
x = 2 or x = 1
Therefore, the solutions to the equation are x = 2 or x = 1.
1) log9x + 2log3x = 5
Rewrite the logarithms using the power rule:
log9x9x9x + log3x3x3x^2 = 5
Combine the logarithms using the product and power rules:
log9x9x9x + log9x9x9x^2 = 5
Simplify the expression:
log9x9x9x + log81x281x^281x2 = 5
Combine the logarithms using the product rule:
log9x∗81x29x * 81x^29x∗81x2 = 5
Simplify the expression:
log729x3729x^3729x3 = 5
Convert to exponential form:
729x^3 = 10^5
729x^3 = 100000
x^3 = 100000 / 729
x^3 = 137.174
x = ∛137.174
x = 5.600
2) log2x2−3x^2 - 3x2−3 + 1 = log26x−106x - 106x−10
Subtract 1 from both sides:
log2x2−3x^2 - 3x2−3 = log26x−106x - 106x−10 - 1
Use the properties of logarithms to combine the logarithms on the right side:
log2x2−3x^2 - 3x2−3 = log2(6x−10)/2(6x - 10) / 2(6x−10)/2
Since the bases are the same, the arguments must be equal:
x^2 - 3 = 6x−106x - 106x−10 / 2
Simplify the equation:
2x^2 - 6 = 6x - 10
Rearrange the equation to set it equal to zero:
2x^2 - 6x + 4 = 0
Solve the quadratic equation by factoring or using the quadratic formula:
x−2x - 2x−22x−22x - 22x−2 = 0
x = 2 or x = 1
Therefore, the solutions to the equation are x = 2 or x = 1.