To simplify the expression: sin2a−2cosasin2a - 2cos asin2a−2cosa/1+cos2a1 + cos2a1+cos2a - tan a, we can first rewrite sin2a and cos2a in terms of sine and cosine functions.
sin2a = 2sin a cos a cos2a = 2cos^2 a - 1
Now substitute these values into the expression:
2sinacosa−2cosa2sin a cos a - 2cos a2sinacosa−2cosa/1+2cos2a−11 + 2cos^2 a - 11+2cos2a−1 - tan a 2cosa(sina−1)2cos a (sin a - 1)2cosa(sina−1)/2cos^2 a - tan a sina−1sin a - 1sina−1/cos a - tan a sina−cosasin a - cos asina−cosa/cos a
Therefore, the simplified expression is sina−cosasin a - cos asina−cosa/cos a.
To simplify the expression: sin2a−2cosasin2a - 2cos asin2a−2cosa/1+cos2a1 + cos2a1+cos2a - tan a, we can first rewrite sin2a and cos2a in terms of sine and cosine functions.
sin2a = 2sin a cos a
cos2a = 2cos^2 a - 1
Now substitute these values into the expression:
2sinacosa−2cosa2sin a cos a - 2cos a2sinacosa−2cosa/1+2cos2a−11 + 2cos^2 a - 11+2cos2a−1 - tan a
2cosa(sina−1)2cos a (sin a - 1)2cosa(sina−1)/2cos^2 a - tan a
sina−1sin a - 1sina−1/cos a - tan a
sina−cosasin a - cos asina−cosa/cos a
Therefore, the simplified expression is sina−cosasin a - cos asina−cosa/cos a.