Упростите выражение \dfrac{x^3}{y-2}:\dfrac{x^2}{3y-6} y−2 x 3 : 3y−6 x 2 и найдите его значение при x=-3x=−3 , y=0,5y=0,5 .

26 Сен 2022 в 19:40
713 +1
0
Ответы
1

Для упрощения данного выражения мы можем преобразовать дроби следующим образом:

Разделим числитель и знаменатель в первой дроби на x^2:
\frac{x^3}{y-2} = \frac{x*x^2}{y-2} = \frac{x^2(x)}{y-2}Разделим числитель и знаменатель во второй дроби на 3:
\frac{x^2}{3y-6} = \frac{x^2}{3(y-2)}

Подставим полученные выражения обратно в исходное и упростим:
\frac{x^2(x)}{y-2} : \frac{x^2}{3(y-2)} = \frac{x^2(x)}{y-2} * \frac{3(y-2)}{x^2}
= 3x

Теперь, подставим x=-3, y=0,5 и найдем значение выражения:
3 * (-3) = -9

Итак, значение выражения при x=-3, y=0,5 равно -9.

16 Апр 2024 в 17:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир