Подобны ли треугольники ABC и A1B1C1, если известно, что AB=10, BC=8, A1B1=5, A1C1=3, угл С=углу С1=90 и угл А = углу А1 ( с решением)

28 Янв 2023 в 19:40
149 +1
1
Ответы
1

Для начала определим треугольники ABC и A1B1C1.

Треугольник ABC:
AB = 10,
BC = 8,
угол C = 90 градусов.

Треугольник A1B1C1:
A1B1 = 5,
A1C1 = 3,
угол C1 = 90 градусов,
угол A = угол A1.

Для начала найдем третью сторону треугольника ABC с помощью теоремы Пифагора:
AC = √(AB^2 + BC^2) = √(10^2 + 8^2) = √(100 + 64) = √164 ≈ 12.81.

Теперь вычислим третью сторону треугольника A1B1C1 с помощью теоремы Пифагора:
A1C1 = √(A1B1^2 + B1C1^2) = √(5^2 + 3^2) = √(25 + 9) = √34 ≈ 5.83.

Теперь у нас есть стороны треугольников ABC и A1B1C1:
AC ≈ 12.81,
A1C1 ≈ 5.83.

Поскольку AC ≠ A1C1, треугольники ABC и A1B1C1 не равны.

Следовательно, треугольники ABC и A1B1C1 не подобны.

16 Апр 2024 в 16:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир