Для начала преобразуем tgxxx и ctgxxx в виде синуса и косинуса:
tgxxx = sinxxx / cosxxx ctgxxx = cosxxx / sinxxx
Подставим в данное выражение и преобразуем:
1 - tgxxx / 1−ctg(x)1 - ctg(x)1−ctg(x) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) / 1−(cos(x)/sin(x))1 - (cos(x) / sin(x))1−(cos(x)/sin(x)) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) / (sin(x)−cos(x))/sin(x)(sin(x) - cos(x)) / sin(x)(sin(x)−cos(x))/sin(x) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) sin(x)/(sin(x)−cos(x))sin(x) / (sin(x) - cos(x))sin(x)/(sin(x)−cos(x)) = 1 - sin^2xxx / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x))
Последний шаг - сократим sin^2xxx и cosxxx:
1 - sin^2xxx / cos(x)<em>(sin(x)−cos(x))cos(x) <em> (sin(x) - cos(x))cos(x)<em>(sin(x)−cos(x)) = cos2(x)−sin2(x)cos^2(x) - sin^2(x)cos2(x)−sin2(x) / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x)) = (cos(x)−sin(x))<em>(cos(x)+sin(x))(cos(x) - sin(x)) <em> (cos(x) + sin(x))(cos(x)−sin(x))<em>(cos(x)+sin(x)) / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x)) = cos(x)+sin(x)cos(x) + sin(x)cos(x)+sin(x) / −cos(x)-cos(x)−cos(x) = -1 - tanxxx
Итак, итоговый ответ: -1 - tanxxx
Для начала преобразуем tgxxx и ctgxxx в виде синуса и косинуса:
tgxxx = sinxxx / cosxxx ctgxxx = cosxxx / sinxxx
Подставим в данное выражение и преобразуем:
1 - tgxxx / 1−ctg(x)1 - ctg(x)1−ctg(x) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) / 1−(cos(x)/sin(x))1 - (cos(x) / sin(x))1−(cos(x)/sin(x)) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) / (sin(x)−cos(x))/sin(x)(sin(x) - cos(x)) / sin(x)(sin(x)−cos(x))/sin(x) = 1 - sin(x)/cos(x)sin(x) / cos(x)sin(x)/cos(x) sin(x)/(sin(x)−cos(x))sin(x) / (sin(x) - cos(x))sin(x)/(sin(x)−cos(x)) = 1 - sin^2xxx / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x))
Последний шаг - сократим sin^2xxx и cosxxx:
1 - sin^2xxx / cos(x)<em>(sin(x)−cos(x))cos(x) <em> (sin(x) - cos(x))cos(x)<em>(sin(x)−cos(x)) = cos2(x)−sin2(x)cos^2(x) - sin^2(x)cos2(x)−sin2(x) / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x)) = (cos(x)−sin(x))<em>(cos(x)+sin(x))(cos(x) - sin(x)) <em> (cos(x) + sin(x))(cos(x)−sin(x))<em>(cos(x)+sin(x)) / cos(x)</em>(sin(x)−cos(x))cos(x) </em> (sin(x) - cos(x))cos(x)</em>(sin(x)−cos(x)) = cos(x)+sin(x)cos(x) + sin(x)cos(x)+sin(x) / −cos(x)-cos(x)−cos(x) = -1 - tanxxx
Итак, итоговый ответ: -1 - tanxxx