Математика вклады экономическая задача Семён Семёнович хочет положить определённую сумму денег в разные банки под некоторые проценты.
4
• этой суммы он помещает на вклад
5
«Райский» под г% годовых, а оставшуюся часть денег на вклад «Юж-ный» под д% годовых (проценты начисляются в конце года и добавляются к сумме вклада). Через год сумма вкладов (с учётом процентов) равна 212000 рублей, а через два года - 224800 рублей. Если бы Семён Се-
4
менович изначально -
* суммы положил на вклад «Южный», а оставшиеся
средства на вклад «Райский», то через год сумма вкладов (с учётом до-бавленных процентов) была бы равна 218 000 рублей. Чему в этом случае была бы равна сумма вкладов через два года?

14 Апр 2024 в 19:41
50 +1
0
Ответы
1

Пусть первоначальная сумма денег, которую Семён Семёнович положил во вклад "Райский" составляет x рублей, а во вклад "Южный" - (1-x) рублей.

По условию задачи, через год сумма вкладов (с учётом процентов) равна 212000 рублей:

x(1 + g/100) + (1-x)(1 + d/100) = 212000 (1)

Через два года сумма вкладов (с учётом процентов) равна 224800 рублей:

x(1 + g/100)^2 + (1-x)(1 + d/100)^2 = 224800 (2)

Если бы Семён Семёнович изначально x суммы положил на вклад "Южный", то через год сумма вкладов (с учётом процентов) была бы равна 218000 рублей:

x(1 + d/100) + (1-x)(1 + g/100) = 218000 (3)

Из уравнения (1) можно выразить x:

x = (212000 - (1-x)(1 + d/100))/(1 + g/100) (4)

Подставляем x из уравнения (4) в уравнения (2) и (3) и получаем:

((212000 - (1-x)(1 + d/100))/(1 + g/100))(1 + g/100) + (1 - ((212000 - (1-x)(1 + d/100))/(1 + g/100)))(1 + d/100) = 224800

((212000 - (1-x)(1 + d/100))/(1 + d/100))(1 + d/100) + (1 - ((212000 - (1-x)(1 + d/100))/(1 + d/100)))(1 + g/100) = 218000

Вычисляем полученные уравнения и находим сумму вкладов через два года.

28 Мая 2024 в 20:25
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир