Точка максимума функции Найдите точку максимума функции y=ln(x+5)-2x+13

16 Июл 2024 в 19:40
112 +2
0
Ответы
1

Для нахождения точки максимума функции, необходимо найти ее производную и приравнять ее к нулю.

y = ln(x+5) - 2x + 13

Найдем производную функции:

y' = (1/(x+5)) - 2

Теперь приравняем производную к нулю и найдем точку максимума:

(1/(x+5)) - 2 = 0
1/(x+5) = 2
x + 5 = 1/2
x = -9/2

Теперь найдем значение y в точке максимума:

y = ln((-9/2) + 5) - 2(-9/2) + 13
y = ln(1/2) + 9 + 13
y = ln(1/2) + 22
y ≈ -0.693 + 22
y ≈ 21.31

Таким образом, точка максимума функции y=ln(x+5)-2x+13 равна (-9/2, 21.31).

17 Сен 2024 в 13:16
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир