Давайте обозначим стороны параллелограмма как ( a ) и ( b ). По условию задачи, стороны соотносятся как 7:4. Это можно записать следующим образом:
[\frac{a}{b} = \frac{7}{4}]
Отсюда можно выразить ( a ) через ( b ):
[a = \frac{7}{4}b]
Также известно, что периметр (примитер) параллелограмма равен 85,8 см. Периметр параллелограмма рассчитывается по формуле:
[P = 2(a + b)]
Подставим в формулу выражение для ( a ):
[85,8 = 2\left(\frac{7}{4}b + b\right)]
Упростим выражение в скобках:
[\frac{7}{4}b + b = \frac{7}{4}b + \frac{4}{4}b = \frac{11}{4}b]
Теперь подставим это в уравнение:
[85,8 = 2 \cdot \frac{11}{4}b]
Упростим уравнение:
[85,8 = \frac{22}{4}b]
[85,8 = \frac{11}{2}b]
Теперь умножим обе стороны на 2, чтобы избавиться от дроби:
[171,6 = 11b]
Разделим обе стороны на 11:
[b = \frac{171,6}{11} \approx 15,6 \text{ см}]
Теперь подставим значение ( b ) обратно, чтобы найти ( a ):
[a = \frac{7}{4}b = \frac{7}{4} \cdot 15,6 \approx 27,4 \text{ см}]
Таким образом, стороны параллелограмма составляют примерно:
[a \approx 27,4 \text{ см}, \quad b \approx 15,6 \text{ см}]
Давайте обозначим стороны параллелограмма как ( a ) и ( b ). По условию задачи, стороны соотносятся как 7:4. Это можно записать следующим образом:
[
\frac{a}{b} = \frac{7}{4}
]
Отсюда можно выразить ( a ) через ( b ):
[
a = \frac{7}{4}b
]
Также известно, что периметр (примитер) параллелограмма равен 85,8 см. Периметр параллелограмма рассчитывается по формуле:
[
P = 2(a + b)
]
Подставим в формулу выражение для ( a ):
[
85,8 = 2\left(\frac{7}{4}b + b\right)
]
Упростим выражение в скобках:
[
\frac{7}{4}b + b = \frac{7}{4}b + \frac{4}{4}b = \frac{11}{4}b
]
Теперь подставим это в уравнение:
[
85,8 = 2 \cdot \frac{11}{4}b
]
Упростим уравнение:
[
85,8 = \frac{22}{4}b
]
[
85,8 = \frac{11}{2}b
]
Теперь умножим обе стороны на 2, чтобы избавиться от дроби:
[
171,6 = 11b
]
Разделим обе стороны на 11:
[
b = \frac{171,6}{11} \approx 15,6 \text{ см}
]
Теперь подставим значение ( b ) обратно, чтобы найти ( a ):
[
a = \frac{7}{4}b = \frac{7}{4} \cdot 15,6 \approx 27,4 \text{ см}
]
Таким образом, стороны параллелограмма составляют примерно:
[
a \approx 27,4 \text{ см}, \quad b \approx 15,6 \text{ см}
]