The given expression can be simplified by using the formula for the sum of two cube roots:
∛aaa + ∛bbb = ∛a+b+3√(ab)a+b+3√(ab)a+b+3√(ab)
In this case, a = 16 + 8√5 and b = 16 - 8√5.
Now, let's find the value of a + b and ab:
a + b = 16+8√516 + 8√516+8√5 + 16−8√516 - 8√516−8√5 = 32ab = 16+8√516 + 8√516+8√516−8√516 - 8√516−8√5 = 256 - 64555 = 256 - 320= -64
Now, substitute these values into the formula:
∛16+8√516 + 8√516+8√5 + ∛16−8√516 - 8√516−8√5 = ∛32−6432 - 6432−64 = ∛−32-32−32 = -2
Therefore, the simplified expression is -2.
The given expression can be simplified by using the formula for the sum of two cube roots:
∛aaa + ∛bbb = ∛a+b+3√(ab)a+b+3√(ab)a+b+3√(ab)
In this case, a = 16 + 8√5 and b = 16 - 8√5.
Now, let's find the value of a + b and ab:
a + b = 16+8√516 + 8√516+8√5 + 16−8√516 - 8√516−8√5 = 32
ab = 16+8√516 + 8√516+8√516−8√516 - 8√516−8√5 = 256 - 64555 = 256 - 320
= -64
Now, substitute these values into the formula:
∛16+8√516 + 8√516+8√5 + ∛16−8√516 - 8√516−8√5 = ∛32−6432 - 6432−64 = ∛−32-32−32 = -2
Therefore, the simplified expression is -2.