Let's simplify the given expression step by step:
(√3 + 1) × (√√24 - 16√2 - 1) - √6 + √3 - √2
First, simplify the parentheses by distributing (√3 + 1):= √3 × √√24 - 16√2 - √3 + √√24 - 16√2 - 1
Simplifying the square roots:= √3 × 2√6 - 16√2 - √3 + 2√24 - 16√2 - 1= 2√18 - 16√2 - √3 + 2√24 - 16√2 - 1= 6√2 - 16√2 - √3 + 8√6 - 16√2 - 1= -26√2 - √3 + 8√6 - 1
Combine like terms:= -26√2 - √3 + 8√6 - 1 - √6 + √3 - √2
Now, combine the square root terms:= -26√2 + 7√3 - 1 + 7√6 - √2
Thus, the final simplified expression is:= -27√2 + 7√3 + 7√6 - 1
Let's simplify the given expression step by step:
(√3 + 1) × (√√24 - 16√2 - 1) - √6 + √3 - √2
First, simplify the parentheses by distributing (√3 + 1):
= √3 × √√24 - 16√2 - √3 + √√24 - 16√2 - 1
Simplifying the square roots:
= √3 × 2√6 - 16√2 - √3 + 2√24 - 16√2 - 1
= 2√18 - 16√2 - √3 + 2√24 - 16√2 - 1
= 6√2 - 16√2 - √3 + 8√6 - 16√2 - 1
= -26√2 - √3 + 8√6 - 1
Combine like terms:
= -26√2 - √3 + 8√6 - 1 - √6 + √3 - √2
Now, combine the square root terms:
= -26√2 + 7√3 - 1 + 7√6 - √2
Thus, the final simplified expression is:
= -27√2 + 7√3 + 7√6 - 1