Решите систему уравнений методом замены переменных: 5*x/y+(x/y)^2 = 14 Функция 5x+3y=13

14 Июн 2019 в 19:42
214 +1
0
Ответы
1

Давайте представим, что x/y=a x/y = a x/y=a. Заменим переменные и решим систему уравнений:

1) 5a+a2=14 5a + a^2 = 14 5a+a2=14 2) 5x+3y=13 5x + 3y = 13 5x+3y=13

Исходя из первого уравнения, получаем:
a2+5a−14=0 a^2 + 5a - 14 = 0 a2+5a14=0 Факторизуем:
(a+7)(a−2)=0 (a + 7)(a - 2) = 0 (a+7)(a2)=0

Таким образом, получаем два возможных решения для a a a:
1) a=−7 a = -7 a=7 2) a=2 a = 2 a=2

Далее подставляем a a a обратно в уравнения и решаем систему:

1) Для a=−7 a = -7 a=7 получаем:
x/y=−7 x/y = -7 x/y=7 5x+3y=13 5x + 3y = 13 5x+3y=13

Умножим первое уравнение на y y y:
x=−7y x = -7y x=7y

Подставляем во второе уравнение:
5(−7y)+3y=13 5(-7y) + 3y = 13 5(7y)+3y=13 −35y+3y=13 -35y + 3y = 13 35y+3y=13 −32y=13 -32y = 13 32y=13 y=−13/32 y = -13/32 y=13/32

Теперь находим значение x x x:
x=−7(−13/32) x = -7(-13/32) x=7(13/32) x=91/32 x = 91/32 x=91/32

Итак, для a=−7 a = -7 a=7 решением системы будет x=91/32,y=−13/32 x = 91/32, y = -13/32 x=91/32,y=13/32.

2) Для a=2 a = 2 a=2 получаем:
x/y=2 x/y = 2 x/y=2 5x+3y=13 5x + 3y = 13 5x+3y=13

Умножим первое уравнение на y y y:
x=2y x = 2y x=2y

Подставляем во второе уравнение:
5(2y)+3y=13 5(2y) + 3y = 13 5(2y)+3y=13 10y+3y=13 10y + 3y = 13 10y+3y=13 13y=13 13y = 13 13y=13 y=1 y = 1 y=1

Теперь находим значение x x x:
x=2∗1 x = 2*1 x=21 x=2 x = 2 x=2

Итак, для a=2 a = 2 a=2 решением системы будет x=2,y=1 x = 2, y = 1 x=2,y=1.

21 Апр 2024 в 01:08
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир