Для решения данной задачи воспользуемся теоремой Пифагора.
Пусть длина наклонной равна (c), длина перпендикуляра равна (a) (15 см), длина проекции наклонной равна (b) (8 см).
Тогда по теореме Пифагора:[ c^2 = a^2 + b^2 ][ c^2 = 15^2 + 8^2 ][ c^2 = 225 + 64 ][ c^2 = 289 ]
Извлекая квадратный корень, получим:[ c = \sqrt{289} ][ c = 17 ]
Таким образом, длина наклонной равна 17 см.
Для решения данной задачи воспользуемся теоремой Пифагора.
Пусть длина наклонной равна (c), длина перпендикуляра равна (a) (15 см), длина проекции наклонной равна (b) (8 см).
Тогда по теореме Пифагора:
[ c^2 = a^2 + b^2 ]
[ c^2 = 15^2 + 8^2 ]
[ c^2 = 225 + 64 ]
[ c^2 = 289 ]
Извлекая квадратный корень, получим:
[ c = \sqrt{289} ]
[ c = 17 ]
Таким образом, длина наклонной равна 17 см.