Expanding the expression, we get:
(x^2 + x - 3)(x^2 + x - 3) + 12x^2 + 12x - 9= x^4 + 2x^3 - 6x^2 + x^3 + 2x^2 - 6x - 3x^2 - 6x + 18 + 12x^2 + 12x - 9= x^4 + 3x^3 + 3x^2 - 9x + 18 + 12x^2 + 12x - 9= x^4 + 3x^3 + 15x^2 + 3x + 9
Therefore, the expanded expression is x^4 + 3x^3 + 15x^2 + 3x + 9 = 0.
Expanding the expression, we get:
(x^2 + x - 3)(x^2 + x - 3) + 12x^2 + 12x - 9
= x^4 + 2x^3 - 6x^2 + x^3 + 2x^2 - 6x - 3x^2 - 6x + 18 + 12x^2 + 12x - 9
= x^4 + 3x^3 + 3x^2 - 9x + 18 + 12x^2 + 12x - 9
= x^4 + 3x^3 + 15x^2 + 3x + 9
Therefore, the expanded expression is x^4 + 3x^3 + 15x^2 + 3x + 9 = 0.