First we expand the expression sinx+cosxsinx+cosxsinx+cosx^2:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x)
Now we divide this expression by sin2x2x2x+1:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x) / sin(2x)+1sin(2x) + 1sin(2x)+1
We know that sin2x2x2x = 2sinxcosx, so we can substitute this into our expression:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x) / 2sinxcosx+12sinxcosx + 12sinxcosx+1
At this point, the expression can't be simplified any further.
First we expand the expression sinx+cosxsinx+cosxsinx+cosx^2:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x)
Now we divide this expression by sin2x2x2x+1:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x) / sin(2x)+1sin(2x) + 1sin(2x)+1
We know that sin2x2x2x = 2sinxcosx, so we can substitute this into our expression:
sin2(x)+2sinx∗cosx+cos2(x)sin^2(x) + 2sinx*cosx + cos^2(x)sin2(x)+2sinx∗cosx+cos2(x) / 2sinxcosx+12sinxcosx + 12sinxcosx+1
At this point, the expression can't be simplified any further.