Вычислите приращение функции y=f(x) на промежутке [x;x+Δx]:f(x)=x^3-2x^2+x, x=-1, Δx=1

12 Сен 2019 в 04:43
147 +1
0
Ответы
1

Для нахождения приращения функции y=f(x) на промежутке [x;x+Δx] необходимо вычислить значения функции в точках x и x+Δx и вычислить разность между ними.

f(x) = x^3 - 2x^2 + x

При x = -1:

f(-1) = (-1)^3 - 2(-1)^2 + (-1)
f(-1) = -1 - 2 + (-1)
f(-1) = -4

При x = -1, Δx = 1:

f(-1+1) = f(0)

f(0) = 0^3 - 2(0)^2 + 0
f(0) = 0

Приращение функции на промежутке [-1;0] равно разности значений функции в этих точках:

Δf = f(0) - f(-1) = 0 - (-4) = 4

Итак, приращение функции y=f(x) на промежутке [-1;0] равно 4.

20 Апр 2024 в 01:32
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир