The given expression can be simplified by finding the common denominator and adding the terms inside the parentheses.
First, let's find the common denominator for the terms inside the parentheses:
The denominator of the first term is x^2 - 4, which can be factored as x+2x+2x+2x−2x-2x−2.The denominator of the second term is 2x - x^2, which can be rewritten as -x^2 + 2x.
Now, the common denominator for both terms is x+2x+2x+2x−2x-2x−2−x2+2x-x^2 + 2x−x2+2x.
Next, rewrite each term with the common denominator and then add them together:
2x2−4\frac{2}{x^2-4}x2−42 can be rewritten as 2(x+2)(x−2)\frac{2}{(x+2)(x-2)}(x+2)(x−2)2.12x−x2\frac{1}{2x-x^2}2x−x21 can be rewritten as 1(−x2+2x)\frac{1}{(-x^2+2x)}(−x2+2x)1.
So, the expression inside the parentheses becomes: 2(x+2)(x−2)+1(−x2+2x)\frac{2}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x−2)2+(−x2+2x)1
Now, we multiply the first term by (x+2)(x+2)\frac{(x+2)}{(x+2)}(x+2)(x+2) to get a common denominator: 2(x+2)(x+2)(x−2)+1(−x2+2x)\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x−2)2(x+2)+(−x2+2x)1
Now we have: 2(x+2)(x+2)(x−2)+1(−x2+2x):1x2+4x+4\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}:\frac{1}{x^2+4x+4}(x+2)(x−2)2(x+2)+(−x2+2x)1:x2+4x+41
To divide by a fraction, we multiply by its reciprocal: 2(x+2)(x+2)(x−2)+1(−x2+2x)⋅x2+4x+41\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}\cdot\frac{x^2+4x+4}{1}(x+2)(x−2)2(x+2)+(−x2+2x)1⋅1x2+4x+4
At this step, the numerator and denominator in the second term can cancel out, leading to: 2(x+2)+(x+2)2(x+2) + (x+2)2(x+2)+(x+2)2x+4+x+22x + 4 + x + 22x+4+x+23x+63x + 63x+6
Therefore, the simplified expression is 3x+63x + 63x+6, assuming x is not equal to 2 or 0.
The given expression can be simplified by finding the common denominator and adding the terms inside the parentheses.
First, let's find the common denominator for the terms inside the parentheses:
The denominator of the first term is x^2 - 4, which can be factored as x+2x+2x+2x−2x-2x−2.The denominator of the second term is 2x - x^2, which can be rewritten as -x^2 + 2x.Now, the common denominator for both terms is x+2x+2x+2x−2x-2x−2−x2+2x-x^2 + 2x−x2+2x.
Next, rewrite each term with the common denominator and then add them together:
2x2−4\frac{2}{x^2-4}x2−42 can be rewritten as 2(x+2)(x−2)\frac{2}{(x+2)(x-2)}(x+2)(x−2)2 .12x−x2\frac{1}{2x-x^2}2x−x21 can be rewritten as 1(−x2+2x)\frac{1}{(-x^2+2x)}(−x2+2x)1 .So, the expression inside the parentheses becomes:
2(x+2)(x−2)+1(−x2+2x)\frac{2}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x−2)2 +(−x2+2x)1
Now, we multiply the first term by (x+2)(x+2)\frac{(x+2)}{(x+2)}(x+2)(x+2) to get a common denominator:
2(x+2)(x+2)(x−2)+1(−x2+2x)\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x−2)2(x+2) +(−x2+2x)1
Now we have:
2(x+2)(x+2)(x−2)+1(−x2+2x):1x2+4x+4\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}:\frac{1}{x^2+4x+4}(x+2)(x−2)2(x+2) +(−x2+2x)1 :x2+4x+41
To divide by a fraction, we multiply by its reciprocal:
2(x+2)(x+2)(x−2)+1(−x2+2x)⋅x2+4x+41\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}\cdot\frac{x^2+4x+4}{1}(x+2)(x−2)2(x+2) +(−x2+2x)1 ⋅1x2+4x+4
Simplifying further, we get:
2(x+2)(x+2)(x−2)+(x2+4x+4)(−x2+2x)\frac{2(x+2)}{(x+2)(x-2)} + \frac{(x^2 + 4x + 4)}{(-x^2 + 2x)}(x+2)(x−2)2(x+2) +(−x2+2x)(x2+4x+4) 2(x+2)(x+2)(x−2)+(x+2)(x+2)(−x)(x−2)\frac{2(x+2)}{(x+2)(x-2)} + \frac{(x+2)(x+2)}{(-x)(x-2)}(x+2)(x−2)2(x+2) +(−x)(x−2)(x+2)(x+2)
At this step, the numerator and denominator in the second term can cancel out, leading to:
2(x+2)+(x+2)2(x+2) + (x+2)2(x+2)+(x+2) 2x+4+x+22x + 4 + x + 22x+4+x+2 3x+63x + 63x+6
Therefore, the simplified expression is 3x+63x + 63x+6, assuming x is not equal to 2 or 0.