16 Сен 2019 в 04:43
183 +1
0
Ответы
1

The given expression can be simplified by finding the common denominator and adding the terms inside the parentheses.

First, let's find the common denominator for the terms inside the parentheses:

The denominator of the first term is x^2 - 4, which can be factored as x+2x+2x+2x−2x-2x2.The denominator of the second term is 2x - x^2, which can be rewritten as -x^2 + 2x.

Now, the common denominator for both terms is x+2x+2x+2x−2x-2x2−x2+2x-x^2 + 2xx2+2x.

Next, rewrite each term with the common denominator and then add them together:

2x2−4\frac{2}{x^2-4}x242 can be rewritten as 2(x+2)(x−2)\frac{2}{(x+2)(x-2)}(x+2)(x2)2 .12x−x2\frac{1}{2x-x^2}2xx21 can be rewritten as 1(−x2+2x)\frac{1}{(-x^2+2x)}(x2+2x)1 .

So, the expression inside the parentheses becomes:
2(x+2)(x−2)+1(−x2+2x)\frac{2}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x2)2 +(x2+2x)1

Now, we multiply the first term by (x+2)(x+2)\frac{(x+2)}{(x+2)}(x+2)(x+2) to get a common denominator:
2(x+2)(x+2)(x−2)+1(−x2+2x)\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}(x+2)(x2)2(x+2) +(x2+2x)1

Now we have:
2(x+2)(x+2)(x−2)+1(−x2+2x):1x2+4x+4\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}:\frac{1}{x^2+4x+4}(x+2)(x2)2(x+2) +(x2+2x)1 :x2+4x+41

To divide by a fraction, we multiply by its reciprocal:
2(x+2)(x+2)(x−2)+1(−x2+2x)⋅x2+4x+41\frac{2(x+2)}{(x+2)(x-2)} + \frac{1}{(-x^2 + 2x)}\cdot\frac{x^2+4x+4}{1}(x+2)(x2)2(x+2) +(x2+2x)1 1x2+4x+4

Simplifying further, we get:
2(x+2)(x+2)(x−2)+(x2+4x+4)(−x2+2x)\frac{2(x+2)}{(x+2)(x-2)} + \frac{(x^2 + 4x + 4)}{(-x^2 + 2x)}(x+2)(x2)2(x+2) +(x2+2x)(x2+4x+4) 2(x+2)(x+2)(x−2)+(x+2)(x+2)(−x)(x−2)\frac{2(x+2)}{(x+2)(x-2)} + \frac{(x+2)(x+2)}{(-x)(x-2)}(x+2)(x2)2(x+2) +(x)(x2)(x+2)(x+2)

At this step, the numerator and denominator in the second term can cancel out, leading to:
2(x+2)+(x+2)2(x+2) + (x+2)2(x+2)+(x+2) 2x+4+x+22x + 4 + x + 22x+4+x+2 3x+63x + 63x+6

Therefore, the simplified expression is 3x+63x + 63x+6, assuming x is not equal to 2 or 0.

19 Апр 2024 в 23:27
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир