Для начала найдем sinbbb и cosaaa по формулам:
sinaaa = -1/3cosaaa = √1−sin2(a)1 - sin²(a)1−sin2(a) = √1−1/91 - 1/91−1/9 = √8/3
cosbbb = -1/2sinbbb = √1−cos2(b)1 - cos²(b)1−cos2(b) = √1−1/41 - 1/41−1/4 = √3/2
Теперь вычислим sina+ba+ba+b и sina−ba-ba−b по формулам для суммы и разности углов:
sina+ba+ba+b = sinaaacosbbb + cosaaasinbbb = −1/3<em>−1/2-1/3 <em> -1/2−1/3<em>−1/2 + √8/3</em>√3/2√8/3 </em> √3/2√8/3</em>√3/2 = 1/6 + √24/6 = 1+√241 + √241+√24/6
sina−ba-ba−b = sinaaacosbbb - cosaaasinbbb = −1/3<em>−1/2-1/3 <em> -1/2−1/3<em>−1/2 - √8/3</em>√3/2√8/3 </em> √3/2√8/3</em>√3/2 = 1/6 - √24/6 = 1−√241 - √241−√24/6
Теперь посчитаем произведение sina+ba+ba+b и sina−ba-ba−b:
sina+ba+ba+b sina−ba-ba−b = (1+√24)/6(1 + √24)/6(1+√24)/6 (1−√24)/6(1 - √24)/6(1−√24)/6 = 1−241 - 241−24/36 = -23/36
Итак, sina+ba+ba+b * sina−ba-ba−b = -23/36.
Для начала найдем sinbbb и cosaaa по формулам:
sinaaa = -1/3
cosaaa = √1−sin2(a)1 - sin²(a)1−sin2(a) = √1−1/91 - 1/91−1/9 = √8/3
cosbbb = -1/2
sinbbb = √1−cos2(b)1 - cos²(b)1−cos2(b) = √1−1/41 - 1/41−1/4 = √3/2
Теперь вычислим sina+ba+ba+b и sina−ba-ba−b по формулам для суммы и разности углов:
sina+ba+ba+b = sinaaacosbbb + cosaaasinbbb = −1/3<em>−1/2-1/3 <em> -1/2−1/3<em>−1/2 + √8/3</em>√3/2√8/3 </em> √3/2√8/3</em>√3/2 = 1/6 + √24/6 = 1+√241 + √241+√24/6
sina−ba-ba−b = sinaaacosbbb - cosaaasinbbb = −1/3<em>−1/2-1/3 <em> -1/2−1/3<em>−1/2 - √8/3</em>√3/2√8/3 </em> √3/2√8/3</em>√3/2 = 1/6 - √24/6 = 1−√241 - √241−√24/6
Теперь посчитаем произведение sina+ba+ba+b и sina−ba-ba−b:
sina+ba+ba+b sina−ba-ba−b = (1+√24)/6(1 + √24)/6(1+√24)/6 (1−√24)/6(1 - √24)/6(1−√24)/6 = 1−241 - 241−24/36 = -23/36
Итак, sina+ba+ba+b * sina−ba-ba−b = -23/36.