25 Окт 2019 в 19:40
245 +1
0
Ответы
1

This equation represents a conic section, specifically a hyperbola. To determine the type of hyperbola, we can look at the coefficients of the x^2, xy, and y^2 terms.

The general equation of a hyperbola is of the form:
Ax^2 + Bxy + Cy^2 = D

Comparing this general form with the given equation:
A = 1, B = -4, C = -5, D = 1999

To determine the type of hyperbola, we need to calculate the discriminant (B^2 - 4AC):
Discriminant = (-4)^2 - 4(1)(-5) = 16 + 20 = 36

Since the discriminant is positive, the hyperbola is real and has two branches. To determine whether it is a horizontal or vertical hyperbola, we can look at the signs of the coefficients:

If A and C have the same sign, the hyperbola is horizontal.If A and C have opposite signs, the hyperbola is vertical.

In this case, A = 1 (positive) and C = -5 (negative), so the hyperbola is vertical.

Therefore, the equation x^2 - 4xy - 5y^2 = 1999 represents a vertical hyperbola.

19 Апр 2024 в 09:39
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир