To simplify this expression, we can use the properties of logarithms:
Logarithmic Property: log_bxyxyxy = log_bxxx + log_byyy Logarithmic Property: log_bxax^axa = a * log_bxxx
Applying these properties,
log2 3 + log2 24 - 4 log4 3= log2 3<em>243 <em> 243<em>24 - log4 3^4= log2 72 - log4 81= log2 23</em>322^3 </em> 3^223</em>32 - log4 343^434 = log2 2^3 + log2 3^2 - 4 log2 3= 3 log2 2 + 2 log2 3 - 4 log2 3= 3 + 2 * log2 3 - 4 log2 3= 3 - 2 log2 3
Therefore, log2 3 + log2 24 - 4 log4 3 simplifies to 3 - 2 log2 3.
To simplify this expression, we can use the properties of logarithms:
Logarithmic Property: log_bxyxyxy = log_bxxx + log_byyy Logarithmic Property: log_bxax^axa = a * log_bxxx
Applying these properties,
log2 3 + log2 24 - 4 log4 3
= log2 3<em>243 <em> 243<em>24 - log4 3^4
= log2 72 - log4 81
= log2 23</em>322^3 </em> 3^223</em>32 - log4 343^434 = log2 2^3 + log2 3^2 - 4 log2 3
= 3 log2 2 + 2 log2 3 - 4 log2 3
= 3 + 2 * log2 3 - 4 log2 3
= 3 - 2 log2 3
Therefore, log2 3 + log2 24 - 4 log4 3 simplifies to 3 - 2 log2 3.