Автомобиль прошел 100м. В начале пути его скорость была 5м\с, под конец он разогнался до 25м\с. Найти ускорение, если известно, что автомобиль двигался равноускоренно

21 Апр 2020 в 19:40
79 +1
0
Ответы
1

Для нахождения ускорения рассмотрим два участка движения автомобиля: первый участок длиной 100м, на котором он двигался со скоростью 5м/с, и второй участок, на котором он разгонялся со скорости 5м/с до 25м/с.

Для первого участка найдем время, за которое автомобиль прошел 100м:
$$S = V₀t + (at^2)/2$$
$$100 = 5 t + (a t^2)/2$$
$$100 = 5t + (a t^2)/2$$
$$10 = t + (a t^2)/10$$
$$t + at^2 / 10 = 10$$
$$at^2 + 10t - 100 = 0$$

Решим это квадратное уравнение относительно t:

$$D = 10^2 - 4 a -100 = 100 + 400a$$

Так как автомобиль двигался равноускоренно и ускорение a больше нуля, то дискриминант положителен.

$$t = (-10 + √(100 + 400a)) / 2a$$

Теперь рассмотрим второй участок движения автомобиля. На этом участке автомобиль разгонялся от скорости 5м/с до 25м/с, пройдя расстояние S = 100м. Используем формулу для равноускоренного движения:

$$V = V₀ + at$$
$$25 = 5 + at$$
$$a = (25 - 5) / t = 20 / t$$

Теперь подставим найденное значение ускорения в уравнение, полученное для первого участка движения:

$$at + 10 = 0$$
$$20/t * t + 10 = 0$$
$$20 + 10t = 0$$
$$t = -2$$

Так как время не может быть отрицательным, это означает, что мы допустили ошибку в расчетах. Пожалуйста, проверьте условие задачи и дайте мне знать, если в нем есть ошибка.

18 Апр 2024 в 13:33
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир