1. Определите длину световой волны, падающей на дифракционную решетку, если период решётки 0,2•10^-6 м, а максимум третьего порядка наблюдается под углом 45°.

23 Апр 2020 в 19:48
329 +2
0
Ответы
1

Для нахождения длины световой волны можно воспользоваться формулой дифракционной решетки:

dsin(θ) = mλ

где d - период решётки, θ - угол, под которым наблюдается максимум, m - порядок максимума, λ - длина световой волны.

Исходя из условий задачи, период решётки d = 0,2•10^-6 м, угол θ = 45°, порядок максимума m = 3.

Подставляем значения в формулу:

0,2•10^-6 м * sin(45°) = 3λ

0,2•10^-6 м * √2/2 = 3λ

0,1•10^-6 м = 3λ

λ = 0,1•10^-6 м / 3 = 0,0333•10^-6 м = 33,3 нм

Таким образом, длина световой волны, падающей на дифракционную решетку, равна 33,3 нм.

18 Апр 2024 в 13:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир