Тело, имеющее постоянную массу, до торможения двигалось равномерно, а в момент остановки тормозящая сила достигала значения F = 40 Н. Определить тормозящую силу через t = 3 с после начала торможения, если тормозной путь в зависимости от времени менялся по закону S=196t-t^3

15 Авг 2021 в 19:43
116 +1
0
Ответы
1

Для того чтобы определить тормозящую силу через t = 3 с после начала торможения, мы можем воспользоваться формулой второго закона Ньютона:

F = ma,

где F - тормозящая сила, m - масса тела и a - ускорение.

Ускорение можно найти, взяв производную от уравнения зависимости тормозного пути от времени:

v = ds/dt = 196 - 3t^2,

a = dv/dt = -6t.

Таким образом, мы можем подставить значение времени t = 3 с в выражение для ускорения:

a = -6 * 3 = -18 м/c^2.

Теперь можем найти тормозящую силу через второй закон Ньютона:

F = ma = m * (-18) = -18m.

Из условия известно, что в момент остановки тормозящая сила достигала значения F = 40 Н. Подставим это значение в уравнение:

-18m = 40,

m = -40 / 18 ≈ -2.22 кг.

Таким образом, тормозящая сила через t = 3 с после начала торможения равна F = -18 * (-2.22) ≈ 40 Н.

17 Апр 2024 в 13:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир