На сторонах AB и AC треугольника ABC отмечены точки D и E соотвественно. Точки B, C, E, D лежат на одной окружности. Найдите радиус окружности описанной около треугольника ADC если известно что угол CDE = угол BAC и что радиус окружности, описанной около треугольника ABC, равен 1

12 Авг 2020 в 19:42
246 +1
1
Ответы
1

Поскольку точки B, C, E, D лежат на одной окружности, то угол CDE = 180 - угол CBE = 180 - угол CAB = 180 - угол C - угол A. Также угол BAC = угол CDE.

Из этого следует, что угол C = угол A, то есть треугольник ABC является равнобедренным. Так как радиус описанной окружности вокруг равнобедренного треугольника равен 1, то высота, опущенная из вершины C на основание AB, равна 1. Поэтому BC = 2.

Так как треугольник ADC также равнобедренный, радиус окружности, описанной вокруг него, равен 1. Таким образом, радиус окружности, описанной вокруг треугольника ADC, также равен 1.

18 Апр 2024 в 10:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир